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We study vibrational modes and spectrum of a model system of atoms and springs on a scale-free network
where we assume that the atoms and springs are distributed as nodes and links of a scale-free network. To
understand the nature of excitations with many degrees of freedom on the scale-free network, we adopt a
particular model that we assign the massMi and the specific oscillation frequencyvi of the ith atom and the
spring constantKij between theith and j th atoms. We show that the density of states of the spectrum follows
a scaling lawPsv2d~ sv2d−g, whereg=3 and that as the number of nodesN is increasing, the maximum
eigenvalue grows as fast asÎN.
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There has been notable progress in the study of the so-
called scale-free networksSFNd. SFN was discovered by the
Faloutsos brothers and Albert, Jeong, and Barabási from
studying the network geometry of the Internetf1,2g. They
opened up an area in order to study very complex and grow-
ing network systems from physics to biology and economics
f2g. The nature of SFN is characterized by a power-law be-
havior in a distribution function as a function of the number
of nodes with k links, represented byPskd~k−g with g
<1–4. This means that the system is scale-free, since there
is no particular scale in the network geometry. In order to
show how power-law distribution occurs in the SFN, Albert
and Barabási first proposed a very simple model called the
Albert-BarabásisABd’s model f2g.

The AB modelf2g is constructed by the following pro-
cess: Initially we putm0 nodes as seeds in the system. Every
time when a new node is added to the system,m new links
appear such that the inserted node is linked tom nodes al-
ready existing in the system with the preferential attachment
probability Piskid=ki /oi=1

N−1ki. Hereki is the number of links
at the ith nodescalled the degree of theith noded and we
assumemøm0. The development of network in this model is
described by a continuous equation for the degree of node:
dki /dt=mPiskid=mki /2t. By this, at timet the system con-
sists of Nstd nodes and theLstd links with Lstd= 1

2oi=1
Nstdki.

Then, the AB model exhibits power law withg=3. Thus it
has been concluded that the scale-free nature of the SFN is
attributed to both the growth and the preferential attachment
in the network.

Although researchers studied time evolution of an SFN so
far, they regarded nodes and links in the network as meta-
physical objects and correspondences such as agents and re-
lationships in an area of science, respectively. Therefore they
did not put any real physical meaning on the nodes and links
in the SFNs, except some particular systems such as diffu-
sion f3g and spinsf4–8g on a SFN as well as the random

networksf9–11g and small world networksf12g have been
studied. Therefore, even in the system of SFN, it seems
worthwhile investigating excitations in a physical model
such as vibrations, phonons, and electrons as well, although
the problem might look too academic. Thus, as a prototype
model, we would like to study vibrational modes and its
spectrum of the system of oscillators on a SFN, where atoms
and springs are regarded as nodes and links of the SFN.

We first adopt the AB model to construct a SFN. Let us
now assume thattime evolution of the network is adiabatic to
the temporal motion of the atoms and springs. This guaran-
tees that the vibrational model can be instantaneously solved,
where the network is regraded as a static system consisting
of Nstd nodes andLstd links; the network adiabatically
grows under its own time development.

Let us introduce our vibrational model. Assume thatqi
andvi are the displacement and the specific frequency of the
ith atom of massMi, respectively. Define the Hamiltonian of
the system:

H = o
i=1

Nstd SMi

2
q̇i

2 +
Mivi

2

2
qi

2D + o
i,j=1siÞ jd

Nstd
Kij

2
sqi − qjd2, s1d

where q̇i =dqi /dt the velocity of theith atom andKij is the
spring constant between theith and j th atoms withKij =Kji .
By using the Euler-Lagrange equation,d/dts]H /]q̇id
=]H /]qi, we obtain Misq̈i +vi

2qid=o j=1
NstdKjisqj −qid, for i

=1, . . . ,Nstd. And assumingqistd=qisvde−ivt, we get

Misvi
2 − v2dqi = o

j=1

Nstd

Kjisqj − qid, s2d

for i =1, . . . ,Nstd. This is the eigenequation for our system.
Let us assume further that all springs are identical. This

assumption might be an oversimplified one but it helps us to
understand what is going on in the problem. We then have
Kij =K0Aij , whereAij is the i j th component of the adjacency

matrix Â andK0 the spring constant. The components ofÂ
are non-negative such thatAij =0 or 1 according to whether
or not a link between theith and j th nodes exists in the
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network. The degreekistd at the ith atom is given bykistd
=o j=1

NstdAji . From this, the last term in Eq.s2d becomes
o j=1

NstdKjiqi =K0kistdqi. Hence, in this setting, we obtain

Viqi = K0o
j=1

Nstd

Ajiqj , s3d

for i =1, . . . ,Nstd, whereVi ;Misvi
2−v2d+K0kistd. We fur-

ther assume thatMi =M0=const andvi =v0=const.
We have performed the calculation of spectrum of the

oscillator system on a SFN withN nodes, directly diagonal-
izing the eigenequation of Eq.s3d.

Figure 1 shows the tail behavior of the density of states.
We find that the tail behavior is given by

Psv2d ~ sv2d−g, s4d

whereg=3. This is coincident with the result in the weak
coupling limit where the magnitude of spring constantK0 is
very small. In this limit, by a simple derivation using Eq.s3d,
we find Psv2−v0

2d~ sv2−v0
2d−g with g=3. We may call this

limit the AB limit, since the scaling behavior of the spectrum
is the same as that of the network geometry itself. Thus we
find that our vibrational model shares a common nature with
the AB model of the SFN.

This is contrary to the conclusion previously obtained
from the calculations of the spectrum of the adjacency matrix

Â of the AB modelf13–16g. There, it was shown that if the
network has the tail behavior given byPskd~k−g, then the

spectral tail for the eigenvaluesl of the adjacency matrix is
given by rsld~l−g8 where g8=2g−1. Hence if the AB
model hasg=3, theng8=5. This is different from our result
of g8=3.

The main reason for this phenomenon is explained as fol-
lows: In our vibrational model theVi consists of the degree
ki of the nodefsee Eq.s3dg. Therefore, as the system grows,
so does the magnitude ofVi. This can reduce the contribu-

tions of the higher terms in the perturbation series ofÂ.
Hence the spectral behavior is dominated by the diagonal
elements of eigenequation of Eq.s3d. Here we note that

while the adjacency matrixÂ does not consist of diagonal
elements at all, the eigenequation of Eq.s3d does consist of
the diagonal elements that are the degrees of nodes. Since the
distribution of the diagonal elements follows that of degrees
of nodes, so does the distribution of the eigenvalues. There-
fore this tendency is not affected by the magnitude of the
coupling constantK0. Thus we are led to the same spectral
behavior in the AB limit.

The physical meaning of the above results can be under-
stood as follows: The main peak in the density of states is
attributed to vibrational modes with frequencyv0. These
modes are extremely localized within the least connected
nodes in the SFN such that the total number of the localized
modes provides the height of the peak. Since the number of
modes is nothing but the number of degeneracy of the
eigenequation, these localized modes are highly degenerate.

On the other hand, there is the power-law tail ofrsv2d
~ sv2d−3 asv→`. This means that the larger the frequency
of modes the fewer the number of modes. In other words, as
the frequency is increasing, the number of modes is decreas-
ing as power law. As the result, there appears only one mode
with the maximum frequencysi.e., the maximum eigen-
valued. The mode with the maximum frequency is extended
over the entire system of the SFN. This situation means that
in the SFN the lowest frequency modes can be very easily
excited, while the maximum frequency mode is very hard to
excite. Thus it is very hard for the high frequency modes to
exist in the system of oscillators coupled in the SFN. This
nature is very different from that of the standard systems of
networks such as RNf9g and latticesf10g, where there are a
small number of degrees of nodes. This is the most promi-
nent characteristic of our system.

The behavior of the maximum eigenvaluelmax of the ad-

jacency matrixÂ is very important in the network theory
f1,2,13–16g. In the standard networks such as the random
networksf2,9g, the maximum eigenvaluelmax cannot grow
as fast as the network growsf1,2,13–16g; and also, as in
solid state physics, networks in most of the physical systems
provide the so-called energy bands that are a spectrum with
finite spectral regionsf10g. This is due to the topology of the
finite coordination number of atoms in the network of the
lattice structuref10g. Therefore in order to elucidate the dif-
ference between the SFNs and other networks the growth of
the maximum eigenvalue provides an important quantity.

As was numerically studied by many authorsf1,2,14–16g,
the maximum eigenvaluelmax of the adjacency matrixÂ in
the AB model is proportional toÎkmax such that lmax

FIG. 1. sColor onlined The tail behavior of the density of states,
rsv2dÎkkl2 as a function ofv2, is shown in the logarithmic scales
for the cases of the AB model withm=2 andN=104 scirclesd, with
m=4 andN=73103 scrossesd, and withm=4 andN=104 ssquaresd,
respectively. The line is a guide for showingsv2d−3. Here we have
assumed thatv0=K0=M0=1 andm0=5. kkl2 stands for the second
order average degree of a nodef13g, which is defined bykkl2

;oi=1
Nstdki

2/oi=1
Nstdki =kk2l / kkl. The inset shows the density of states in

the real scale for the cases of the AB model withm=2 andm=4 for
N=104, respectively.
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~Îkmax. Herekmax means the maximum degree of a node in
the network such thatkmax=maxihkij, and the numerical stud-
ies showed thatkmax~ÎN. Therefore we obtainlmax~N1/4.

In spite of such efforts, the growth of the maximum ei-
genvalue of a physical model on the SFN is not so well-
known. This is because the eigenvalues of the adjacency ma-
trix are different from those of the eigenequation of a
physical system. In this sense, the problem to investigate the
growth behavior of the maximum eigenvalue is not a trivial
one. Thus, in order to see this point, let us consider the
maximum eigenvaluevmax of our vibrational system of os-
cillators.

We have performed calculations of the maximum eigen-
valuesi.e., vibrational moded vmax in our model of oscillators
on the AB-SFN, wherem=4 andN is developed up toN
=104. In Fig. 2, the maximum eigenvaluevmax

2 , the maxi-
mum degree of a nodekmax, and the second order average
degreekkl2 are shown, respectively. Here we have obtained
the following relation:

v0
2 + 2kkl2 ø vmax

2 ø v0
2 + 2kmax. s5d

This looks similar to the result in the previous literature
f1,2,14–16g:

vmax
2 ~ v0

2 + Îkmax, s6d

which is not supported by our numerical calculations, how-
ever. Therefore, as the spectral tail of our vibrational model
is different from that of the AB-model as discussed in the
previous section, so is the growth behavior of the maximum
eigenvalue of our vibrational model. This is an important
property of our physical model with the AB-SFN.

Let go back to Eq.s3d to consider the origin of the in-

equality, Eq.s5d. From the Hadamard-Gerschgorin’s theorem
f10g we can derive an inequality

uViu ø K0o
j=1

Nstd

uAji u
uqju
uqiu

. s7d

Since uqju / uqiuø1 and uAji u=Aji , we can derive uViu
øK0o juAji u=K0kistd, which then yields a theorem.

Theorem 1.

Uv2 − vi
2 −

K0

Mi
kistdU ø

K0

Mi
o

j

uAji u =
K0

Mi
kistd. s8d

Thus there exists at least one atomic sitesi.e., noded that
satisfies Eq.s8d for all eigenvaluesv. This implies thatv2 is
included within a disk of radiusK0kistd /Mi and its center
vi

2+K0kistd /Mi.
Since in our model allKij si.e., Aijd are non-negative, by

applying the Perron-Frobenius’s theoremf10g to Eq. s8d we
can deriveuv2−vi

2uø2K0kistd /Mi. Hence the maximum fre-
quencyvmax

2 satisfies another theorem.
Theorem 2.

2
K0

M0
min

i
hkistdj ø vmax

2 − v0
2 ø 2

K0

M0
max

i
hkistdj. s9d

We assumed thatMi ;M0=const andvi =v0=const. Hence
this theorem verifies our numerical results in the previous
section.

Therefore the upper limit of the spectrumsi.e., spectral
edged grows as fast as the network grows. This is a remark-
able fact for excitations in the SFN models and this nature is
very different from that of Anderson localization where only
mobility edge may appear in the spectrum and the band edge
cannot grow as fast as the system size growsf10g.

The above Theorems seem good enough to consider the
standard networks such as periodic lattice systems or the
random networksf10g or the small world networksf12g that
the distribution of the degrees of node is limited. Because in
these systems there exist finite lower and upper limits of the
degrees of node such that the error width is bounded as

Dsvmax
2 − v0

2d ù max
i
F2

K0

Mi
kistdG − min

i
F2

K0

Mi
kistdG .

s10d

Next, we confirm that the above theorems can be applied
even for the SFN, although in the SFNs there exist various
orders of nodes without any bound but with a power-law
distribution. Denote bykW i =sAi1, . . . ,AiNstddt the ith column

vector ofÂ. The vector represents the way of links between
the ith node and other nodes; it defines the degreeki of the
ith node such thatki ;kW i

t ·kW i =o jAij . Therefore let us callkW i
vectors thelink vectors. Using this representation, we can

rewrite the adjacency matrix asÂ =skW1, . . . ,kWNstdd
=skW1

t , . . . ,kWNstd
t dt. From this, we can derive thatÂ2=skW i

t ·kW jd,
which is nothing but the Gramian matrix among the link

vectors,kW i, such that TrsÂ2d=oi=1
NstdkW i

t ·kW i =oi=1
Nstdki =2Lstd.

We now rewrite Eq.s3d as ViqW =K0ÂqW. Hence Vi
2qW

FIG. 2. sColor onlined The behavior of the maximum eigenvalue
in the spectrum. The maximum eigenvaluevmax

2 scirclesd, the maxi-
mum degree of nodesv0

2+2kkl2 strianglesd, and the second order
average degreev0

2+2kmax of nodesssquaresd are shown, respec-
tively. The calculations have been carried out for the AB model
with m=4 andN is up toN=104.
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=K0
2Â2qW. Let us now use the Hadamard-Gerschgorin theorem

or the Perron-Frobenius theoremf10g for K0
2Â2. We can de-

rive an inequality uVi
2uøK0

2o j=1
NstdusÂ2d ji uuqju / uqiu. Since

uqju / uqiuø1 and usÂ2d ji u=sÂ2d ji =kW j
t ·kW i, we can deriveuVi

2u
øK0

2o jusÂ2d ji u=K0
2o jkW j

t ·kW i =K0
2kWtot

t ·kW i, where kWtot
t =oi=1

NstdkW i
t

=sk1,k2, . . . ,kNd. Then we have uv2−vi
2−K0kistd /Miu2

ø sK0/Mid2kWtot
t ·kW i. Therefore it then yields a theorem.

Theorem 3.

Uv2 − vi
2 −

K0

Mi
kistdU ø

K0

Mi

ÎkWtot
t ·kW i . s11d

Thus there exists at least one atomic site that satisfies Eq.
s11d for all eigenvaluesv. This implies thatv2 is included
within a disk of radiussK0/MidÎkWtot

t ·kW i and its centervi
2

+K0kistd /Mi. Since uv2−vi
2u− uK0kistd /Miuø uv2−vi

2

−K0kistd /Miu, we obtainuv2−vi
2uø sK0/Midskistd+ÎkWtot

t ·kW id.
Therefore for the maximum frequency we obtain

vmax
2 ø vi

2 + max
i
FK0

Mi
skistd + ÎkWtot

t ·kW idG . s12d

The right-hand side of Eq.s12d is comparable with that of
Eq. s9d. In this way, the Theorems work for the SFN systems
as well.

In conclusion, we have studied the system of oscillators
connected by springs in the geometry of the AB model. We
have found that the power-law behavior of the distribution of
eigenvalues is the same as that of the distribution of degrees
of nodes in the AB model as well. Second, we have found
numerically that the asymptotic behavior of the maximum
eigenvaluevmax of the system is bounded as in Eq.s5d. This
results in theÎN growth of the maximum eigenvalue asN
→`. We have also proved the above numerical results by
applying mathematical theorems. Thus we conclude that
when we apply a certain physical model to the geometry of
an SFN, the physical property is strongly dominated by the
geometrical property of the SFN. In this sense, not only the
network geometry but also the physical model are important
in the study of the SFN. The applications of the present
model to other systems such as an electronic model might be
straightforward. Therefore we expect that the physical nature
of this model may share with that of such other systems.
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