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Vibrational modes and spectrum of oscillators on a scale-free network
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We study vibrational modes and spectrum of a model system of atoms and springs on a scale-free network
where we assume that the atoms and springs are distributed as nodes and links of a scale-free network. To
understand the nature of excitations with many degrees of freedom on the scale-free network, we adopt a
particular model that we assign the madsand the specific oscillation frequenay of theith atom and the
spring constank;; between théth andjth atoms. We show that the density of states of the spectrum follows
a scaling lawP(w?) « (w?)~?, where y=3 and that as the number of nodisis increasing, the maximum
eigenvalue grows as fast anl.
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There has been notable progress in the study of the saretworks[9-11] and small world network$12] have been
called scale-free networlSFN). SFN was discovered by the studied. Therefore, even in the system of SFN, it seems
Faloutsos brothers and Albert, Jeong, and Barabasi frommorthwhile investigating excitations in a physical model
studying the network geometry of the Interrjdt2]. They  such as vibrations, phonons, and electrons as well, although
opened up an area in order to study very complex and growthe problem might look too academic. Thus, as a prototype
ing network systems from physics to biology and economicsnodel, we would like to study vibrational modes and its
[2]. The nature of SFN is characterized by a power-law bexpectrum of the system of oscillators on a SFN, where atoms
havior in a distribution function as a function of the number 5,4 springs are regarded as nodes and links of the SFN.
of nodes withk links, represented byP(k)<k™ with y We first adopt the AB model to construct a SFN. Let us
~1-4. This means that the system is scale-free, since thegg,y assume thaime evolution of the network is adiabatic to
is no particular scale in the network geometry. In order tothe temporal motion of the atoms and springis guaran-
show how power-law distribution occurs in the SFN, Albert tees that the vibrational model can be instantaneously solved,
and Barabasi first proposed a very simple model called thhere the network is regraded as a static system consisting
Albert-BarabasiAB)'s model[2]. _ of N(7) nodes andL(7) links; the network adiabatically

The AB model[2] is constructed by the following pro- grows under its own time development.
cess: Initially we putm, nodes as seeds in the system. Every™ | et ys introduce our vibrational model. Assume thgt
time when a new node is added to the systemmew links  anq, are the displacement and the specific frequency of the

appear such that the inserted node is linkedntaodes al-  jih atom of mas#;, respectively. Define the Hamiltonian of
ready existing in the system with the preferential attachmeng,q system:

probability IT;(k) =ki/=¥;'%;. Herek; is the number of links "
at theith node(called the degree of thith node and we . w2 e
assumen<my,. The development of network in this model is H= 2 (quz + #Q.z) u E _ _ZIJ'(Qi -q)% (D
described by a continuous equation for the degree of node: =1 LD
dk/dr=mil;(k)=mk/27. By this, at timer the system con- where@,=dg/dt the velocity of theith atom andK; is the
sists of N(7) nodes and thé.(7) links with L(T)=%EiN:(1”ki. spring constant between thith andjth atoms withKj; =K;;.
Then, the AB model exhibits power law with=3. Thus it By using the Euler-Lagrange equatiorg/dt(dH/dqy)
has been concluded that the scale-free nature of the SFN #s9H/dg;, we obtain Mi(qi+cui2qi):2.:(iji(qj—qi), for i
attributed to both the growth and the preferential attachment1, ... N(7). And assuminmi(t)zqi(wﬂe““", we get

in the network.

Although researchers studied time evolution of an SFN so
far, they regarded nodes and links in the network as meta-
physical objects and correspondences such as agents and re-
lationships in an area of science, respectively. Therefore thefpr i=1, ... N(7). This is the eigenequation for our system.
did not put any real physical meaning on the nodes and links Let us assume further that all springs are identical. This
in the SFNs, except some particular systems such as difftassumption might be an oversimplified one but it helps us to
sion [3] and sping4-8] on a SFN as well as the random understand what is going on in the problem. We then have

Kij :Koéij, whereAj; is theijth component of the adjaceAncy

matrix A and K, the spring constant. The componentsfof
*Email address: kazumoto@stannet.ne.jp are non-negative such thaf;=0 or 1 according to whether
"Email address: hyamada@uranus.dti.ne.jp or not a link between théth and jth nodes exists in the

N(7)

N(7)
Mi(0f - 0?0 = 2 Kji(g; - g), (2)
j=1

1539-3755/2005/18)/0371024)/$23.00 037102-1 ©2005 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW H1, 037102(2005

el e spectral tail for the eigenvaluésof the adjacency matrix is
given by p(\)«\"" where y'=2y-1. Hence if the AB
O = =
i 2 NeTooomes model hasy=3, theny’=5. This is different from our result
O N=10000m=2 of vy =3.
The main reason for this phenomenon is explained as fol-
lows: In our vibrational model th€); consists of the degree
k; of the noddg see Eq(3)]. Therefore, as the system grows,
so does the magnitude 6f;. This can reduce the contribu-
tions of the higher terms in the perturbation seriesfof
Hence the spectral behavior is dominated by the diagonal
elements of eigenequation of E¢(B). Here we note that

020 i

ots i . while the adjacency matridA does not consist of diagonal
ot [} elements at all, the eigenequation of E8). does consist of

10° 005 [ % the diagonal elements that are the degrees of nodes. Since the
o0l 1 distribution of the diagonal elements follows that of degrees

of nodes, so does the distribution of the eigenvalues. There-
fore this tendency is not affected by the magnitude of the
coupling constanK,. Thus we are led to the same spectral
behavior in the AB limit.

The physical meaning of the above results can be under-
stood as follows: The main peak in the density of states is
attributed to vibrational modes with frequeney,. These
modes are extremely localized within the least connected
nodes in the SFN such that the total number of the localized
modes provides the height of the peak. Since the number of
modes is nothing but the number of degeneracy of the
eigenequation, these localized modes are highly degenerate.

On the other hand, there is the power-law tail p6t»?)
= (w?)~2 as w—oe. This means that the larger the frequency
of modes the fewer the number of modes. In other words, as
the frequency is increasing, the number of modes is decreas-
ing as power law. As the result, there appears only one mode

FIG. 1. (Color onling The tail behavior of the density of states,
p(0?) \s"<T>2 as a function ofw?, is shown in the logarithmic scales
for the cases of the AB model witin=2 andN=10" (circles, with
m=4 andN=7x 10° (crosse} and withm=4 andN=10* (square}
respectively. The line is a guide for showitig?) 2. Here we have
assumed thaby=Ko=My=1 andmy=5. (k), stands for the second
order average degree of a nofte3], which is defined byk),
EEi’\i(lT)kiZIEi’i(f)ki =(k®/{k). The inset shows the density of states in
the real scale for the cases of the AB model with2 andm=4 for
N=10% respectively.

network. The degrek;(7) at theith atom is given byk;(7)
—EN(T)A From this, the last term in Eq(2) becomes

N h ; ) ; .
2 KJ.CL Koki(7)g;. Hence, in this setting, we obtain with the maximum frequencyi.e., the maximum eigen-
N(7) value. The mode with the maximum frequency is extended
q=Ko> A (3 ~over the entire system of the SFN. This situation means that

in the SFN the lowest frequency modes can be very easily

) _r excited, while the maximum frequency mode is very hard to

for i=1,... N(7), where(); = M;(o] -~ ) +Koki(7). We fur-  excite. Thus it is very hard for the high frequency modes to

ther assume tha#l;=M,=const andw;=wy=const. exist in the system of oscillators coupled in the SFN. This

We have performed the calculation of spectrum of thenature is very different from that of the standard systems of
oscillator system on a SFN witN nodes, directly diagonal- networks such as RE9] and lattice 10], where there are a

izing the eigenequation of E¢3). small number of degrees of nodes. This is the most promi-
Figure 1 shows the tail behavior of the density of statesnent characteristic of our system.
We find that the tail behavior is given by The behavior of the maximum eigenvalig,, of the ad-
P(w?) o (0?)77, (4) jacency matrixA is very important in the network theory

[1,2,13-18. In the standard networks such as the random
where y=3. This is coincident with the result in the weak networks[2,9], the maximum eigenvalug,,,, cannot grow
coupling limit where the magnitude of spring const&gtis  as fast as the network grow4,2,13-16; and also, as in
very small. In this limit, by a simple derivation using ES), solid state physics, networks in most of the physical systems
we find P(w?— w3) = (0?- w3) ™" with y=3. We may call this provide the so-called energy bands that are a spectrum with
limit the AB limit, since the scaling behavior of the spectrumfinite spectral regiongl0]. This is due to the topology of the
is the same as that of the network geometry itself. Thus wdinite coordination number of atoms in the network of the
find that our vibrational model shares a common nature witHattice structurg 10]. Therefore in order to elucidate the dif-
the AB model of the SFN. ference between the SFNs and other networks the growth of

This is contrary to the conclusion previously obtainedthe maximum eigenvalue provides an important quantity.
from the calculations of the spectrum of the adjacency matrix As was numerically studied by many authgts2,14— 16

A of the AB model[13-16. There, it was shown that if the the maximum eigenvalug,,, of the a_djgcency matriA in
network has the tail behavior given (k) <k™?, then the the AB model is proportional toyk,,, such that\ .
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L L L L L L L é equality, Eq.(5). From the Hadamard-Gerschgorin’s theorem
700 — med ~ [10] we can derive an inequality
<, laf
%0 . B | =Ko X [Ayl-h (7)
2 j=1 |l
500 O  _max |
o 1+2<k>, Since |qj|/|g|=<1 and |A;|=A;, we can derive |Q
O 1+2k max 0 <Ko2i|Aji|=Koki(7), which then yields a theorem.
400 7 B Theorem 1
O
_ O B Ko Ko Ko
300 © o= of = k()| < ME}) Ail= - @)
200 - O B ; i~ i
o Thus there exists at least one atomic dite., node that
] o satisfies Eq(8) for all eigenvaluesw. This implies thatw? is
100—DD o o B included within a disk of radiuKgk;(7)/M; and its center
QLA AL A A A Al P HKk(DIM,.
T T T T T T T T Since in our model alKj; (i.e., Aj) are non-negative, by
50 100 180200 N 250 300 350 400 applying the Perron-Frobenius’s theoré¢i®] to Eq. (8) we

can derivew? - w? < 2Kgki(7)/M;. Hence the maximum fre-

FIG. 2. (Color onling The behavior of the maximum eigenvalue quencyw?,, satisfies another theorem.

in the spectrum. The maximum eigenvaku®,, (circles, the maxi- Theorem 2

mum degree of nodea§+2<k)2 (triangles, and the second order K K

average degre@3+2kna, Of nodes(squares are shown, respec- 20 min{k (1)} < wﬁqax_ wg <29 maxXki(7)}. (9)
tively. The calculations have been carried out for the AB model Mo i Mg i

ith m=4 N i toN=10".
with m=4 andN is up to o We assumed thatl,=M,=const andw; =wy=const. Hence

J— . _ this theorem verifies our numerical results in the previous
* VKnax Herekn,, means the maximum degree of a node inggction.
the network such tha¢y,,= max{ki}, and the numerical stud-  Therefore the upper limit of the spectrufine., spectral
ies showed thalty,, N. Therefore we obtaimya,e N'4. edge grows as fast as the network grows. This is a remark-
In spite of such efforts, the growth of the maximum ei- aple fact for excitations in the SFN models and this nature is
genvalue of a physical model on the SFN is not so well-yery different from that of Anderson localization where only
known. This is because the eigenvalues of the adjacency mgnobility edge may appear in the spectrum and the band edge
trix are different from those of the eigenequation of acannot grow as fast as the system size grb][@
physical system. In this sense, the problem to investigate the The above Theorems seem good enough to consider the
growth behavior of the maximum eigenvalue is not a trivialstandard networks such as periodic lattice systems or the
one. Thus, in order to see this point, let us consider theandom network$10] or the small world networkE12] that
maximum eigenvalue,,, of our vibrational system of os- the distribution of the degrees of node is limited. Because in

cillators. these systems there exist finite lower and upper limits of the
We have performed calculations of the maximum eigendegrees of node such that the error width is bounded as
value(i.e., vibrational modew,,in our model of oscillators K K
on the AB.—SFN, wherem;4 andN is devezloped up td\! A(w%ax‘ wg) = m.a><{2—°ki(r)] _ min[z—oki(f)}
=10 In Fig. 2, the maximum eigenvalue;,., the maxi- i M; i L M
mum degree of a nodk,,, and the second order average (10)
degree(k), are shown, respectively. Here we have obtained _ _
the following relation: Next, we confirm that the above theorems can be applied
even for the SFN, although in the SFNs there exist various
w5+ 2Ky < w2, < 03+ Koy (5)  orders of nodes without any bound but with a power-law
This looks similar to the result in the previous literature d's”'b“t'of‘- Denote byki=(A, ... An(y)" the ith column
[1,2,14-16: vector of A. The vector represents the way of links between
5 , — theith node and other nodes; it defines the ded¢esf the
Omax® @+ VKma (6) ith node such thak, =k -k;==;A;. Therefore let us calk;

which is not supported by our numerical calculations, how-vectors thelink vectors Using this representation, we can
ever. Therefore, as the spectral tail of our vibrational modetewrite the adjacency matrix asA=(ky, ... Ky:)
is different from that of the AB-model as discussed in the:(l?l, ,R'IN(T))t_ From this, we can derive thaﬁZ:(IZi‘-IZj),

previous section, so is the growth behavior of the maximum , .~ . . . . .
. . . S . which is nothing but the Gramian matrix among the link
eigenvalue of our vibrational model. This is an important

" A2 <Nt 7 N, —
property of our physical model with the AB-SFN. vectors k;, such that T(VAZ)—Ei:(l E'ki—zif(l ki=2L(7).
Let go back to Eq(3) to consider the origin of the in- We now rewrite Eq.(3) as Q;G=K,AqG. Hence Q3
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:KSAZd. Let us now use the Hadamard-Gerschgorin theorem In conclusion, we have studied the system of oscillators
or the Perron-Frobenius theordit0] for K2A2 We can de- connected by springs in the geometry of the AB model. We
fve an inequality [02=<KZSNO|(A2)lql/|ql. Since hgve found that the power-law behavior of the d_lstrlbut|on of
~o ! ~, 2*{:1* T ) eigenvalues is the same as that of the distribution of degrees
lgjl/lai| <1 and |(A%);|=(A%); =Kk, we can derivelf|  of nodes in the AB model as well. Second, we have found
<K3Sj|(AY;]=K3S;K -k =K3K ki, where K=K numerically that the asymptotic behavior of the maximum
=(ky,Ko, ... ky). Then we have |0?-w?-Kok(7)/M>  eigenvaluewnmayof the system is bounded as in H§). This

$(K0/Mi)zl?wt-lzi. Therefore it then yields a theorem. results in theyN growth of the maximum eigenvalue &b
Theorem 3 —oo. We have also proved the above numerical results by
K K . applying mathematical theorems. Thus we conclude that
w? - wiz_ Moki(T) = MO\EN k. (1))  when we apply a certain physical model to the geometry of
I I

an SFN, the physical property is strongly dominated by the
Thus there exists at least one atomic site that satisfies Egeometrical property of the SFN. In this sense, not only the
(12) for all eigenvaluesn. This implies thatw? is included — network geometry but also the physical model are important
within a disk of radius(Kq/M;)V *tot.|2i and its centerwiz in the study of the SFN. The application; of the prgsent
+Koki(7)/ M. Since  |w?-w?|~|Koki(n /M| < |w?- o? model to other systems such as an electronic model might be
straightforward. Therefore we expect that the physical nature

I
—Koki(D/M; injw?— w? < (Ko/ M) (ki (1) + VK., -K).
oki(7)/Mi], we obtain|®~ | < (Ko/ M;) (k(7) + Vkor ki) of this model may share with that of such other systems.

Therefore for the maximum frequency we obtain

5 5 Ko \/ﬁ This paper is dedicated to the memory of Dr. Mihoko
Wpax S @ +Ma M(ka(T) + VKior - Ki) |- (120 Yoshida(Lehigh University, deceased recentlyho always
' : helped us for collecting relevant papers. We would like to
The right-hand side of Eq12) is comparable with that of thank Dr. Jun Hidaka for sending us relevant papers. K. |I.
Eq.(9). In this way, the Theorems work for the SFN systemswould like to thank Kazuko Iguchi for her financial support
as well. and encouragement.
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